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Microbial variations in the human gut are harbored in temporal and
spatial heterogeneity, and quantitative prediction of spatiotemporal
dynamic changes in the gut microbiota is imperative for develop-
ment of tailored microbiome-directed therapeutics treatments, e.g.
precision nutrition. Given the high-degree complexity of microbial
variations, subject to the dynamic interactions among host, micro-
bial, and environmental factors, identifying how microbiota colonize
in the gut represents an important challenge. Here we present COm-
puting the DYnamics of microbiota (CODY), a multiscale framework
that integrates species-level modeling of microbial dynamics and
ecosystem-level interactions into a mathematical model that charac-
terizes spatial-specific in vivo microbial residence in the colon as
impacted by host physiology. The framework quantifies spatiotem-
poral resolution of microbial variations on species-level abundance
profiles across site-specific colon regions and in feces, independent
of a priori knowledge. We demonstrated the effectiveness of CODY
using cross-sectional data from two longitudinal metagenomics
studies—the microbiota development during early infancy and dur-
ing short-term diet intervention of obese adults. For each cohort,
CODY correctly predicts the microbial variations in response to diet
intervention, as validated by available metagenomics and metabolo-
mics data. Model simulations provide insight into the biogeograph-
ical heterogeneity among lumen, mucus, and feces, which provides
insight into how host physical forces and spatial structure are shap-
ing microbial structure and functionality.

systems biology | gut microbiota | gastrointestinal

Changes in the human gut microbiome composition are con-
nected with development of numerous diseases, like obesity,

type-2 diabetes, and immune dysfunction (1–3). Quantitative
understanding and predicting how microbial variations are de-
termined are crucial for designing microbiome-directed thera-
pies that target chronic metabolic diseases (4, 5). However, this
remains challenging due to the temporal and spatial heteroge-
neity along the human gut resulting from a dynamic interplay
among host, microbial, and environmental conditions (6, 7). Diet
is recognized as a controllable and pivotal environmental factor
in shaping longitudinal microbial landscape development (8, 9),
such as early childhood colonization (10) and long-term adult-
hood stabilization (11). While profiling of fecal samples enables a
snapshot of consequential changes of the fecal microbiota in re-
sponse to different stimuli, e.g. dietary changes (12–14), it is still far
from describing the intrinsic dynamics of how microbiome colonize
in the gut. Recently, the spatial heterogeneity of microbial com-
position between lumen and mucus has been recognized in mice
(15, 16), but similar studies in humans is impossible with current
techniques. In addition, measurements of absolute abundance
profiles are required to correct the artifacts associated with relative
abundance that confound revealing the interplay between micro-
bial variations and health (17). Therefore, methods that enable
quantifying the absolute, temporal, and spatial variations of in vivo

human gut microbiota are needed to understand how to maintain
or restore healthy microbiota.
Computational models are widely used to decipher microbial

complexity and response to perturbations (18). Most existing models
have limited usage as they only address specific elements of the
multidimensional interaction mechanisms. For example, similarity-
based (19) and rule-mining models (20) describe microbial–
microbial interactions without considering temporal dependency.
The dynamic Bayesian model enables incorporation of directed in-
teractions and longitudinal dataset (21), while reliance on training
dataset and difficulties in model selection render these stochastic
models confining to specific statistic condition and predictions are
therefore not consistent and generalizable (22). The generalized
Lotka–Volterra model (18, 23, 24) represents a step forward to
simulate dynamics via formulating microbial growth rate as a lumped
term, but adherence to assumptions of pairwise interactions-driven
community dynamics and constant environment limits their predic-
tive power. Genome-scale models (GEMs) (25) provide a valuable
resource for studying structured microbial metabolism. With
GEMs, microbial metabolic capacity, microbe–microbe inter-
actions (26–28), microbial–diet interactions (12), and structural
changes of two-species cocultures (29) are characterized using
flux balance analysis (FBA). With rare exceptions, FBA requires
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a priori knowledge of metabolite uptake fluxes distributed among
community members, with current limitations on these resources,
faces challenges with modeling multispecies communities in a dy-
namic manner (30). Therefore, in adapting a computational
framework that can simulate microbiome dynamics along the

human gut, one encounters three challenges: 1) endogenously, the
intrinsic dynamics not only emerge from the large number of
microbiota components but also through the intricate and dy-
namic ways they interact (31, 32); 2) exogenously, the microbiota
is exposed to a series of host–microbe metabolic axes (33), such as
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Fig. 1. Pipeline paradigm of the multiscale framework for COmputing the DYnamics of microbiota (CODY). (A) Schematic of the ECMF for modeling the
dynamic growth of individual bacterial (SI Appendix, Supplementary Method 1). Two components of ECMF include metabolism and regulatory processes. A
repertoire of MPMs, MPM1 to MPMn, are used to represent bacterial metabolism. These are derived from genome-scale metabolite models. The regulatory
process is shown as central green top-down arrows. Kinetic uptake rate of MPMi is shown as rMi by which substrate is converted to products depending on the
amount of enzyme assigned to the corresponding MPMi. In the temporal scale, the total uptake rate is distributed among all MPMs in a regulated way
(equation 1). Regulation is incorporated by the control variable ui, which determines enzyme synthesis rate (rEi in equation 2) and hereby impacts enzyme
concentration (ei), and by the control variable (v in equation 3), which regulates the uptake fluxes (rMi). (B) Illustration of the HRAF for modeling dynamic
metabolic behavior of a microbiota community (SI Appendix, Supplementary Method 2). Two interactive levels are shown, i.e., diet-derived microbial-
accessible carbohydrate degradation (1) and microbial-microbial interactions (2), with dynamic bacterial biology characterized using ECMF. (C) Schematics
of SPCF for biomimetically modeling the colon physiology, including cross-sectional structure with multilayer, water, and metabolite absorption and lon-
gitudinal peristalsis movement (SI Appendix, Supplementary Method 3). (D) Daily meals were translated as diet inputs to CODY. (E) Illustration of assembly of
the three multiscale frameworks into CODY (SI Appendix, Supplementary Method 8). The nine regions of site-specific residence of the gut microbiota are
shown by SPCF, which captures the structure and physiology of the colon. In each region of both longitudinal and cross-sectional directions the intrinsic
dynamics of gut microbiota is characterized by microbial–microbial interactions and individual metabolism and impacted by specific colon physiological
forces. (F) Evaluation of CODY prediction capacity by demonstrating two longitudinal clinical cohorts involving diet-intervention strategies. The first study
involved a long-term gut microbiota dynamic development of Swedish children during early infancy, from neonate to colonization under breastmilk feeding.
Afterward, the gut microbiota continued to develop until maturation at 12 mo, when the diet shifted to solid food. The second study involved a short-term
gut microbiome dynamic development in response to diet intervention, where obese adults with hepatic steatosis experienced carbohydrate restriction for 14
d. (G) CODY enables predictions on the spatiotemporal dynamic variations of in vivo gut microbiota, in vitro microbiota composition in the feces, and as-
sociated metabolite changes.
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colonic physical forces (34), nascent colonization, and nutrient
conditions; and 3) spatial structure of the in vivo microbiota lo-
calization plays a significant role impacting 1 and 2 (24).
Here, we bridge the current theoretical gap by developing a

multiscale framework for COmputing the DYnamics of gut
microbiota (CODY), which enables identification and quantifi-
cation of spatiotemporal-specific variations of gut microbiome
absolute and relative abundance profiles, without a prior knowl-
edge of microbiome interactions. We evaluated CODY’s perfor-
mance by comparing model simulations with longitudinal changes
in the microbial composition in fecal samples and in plasma
metabolomics of two cohorts: 1) long-term development of the gut
microbiome in early infancy and 2) short-term variation patterns
of the gut microbiome in obese adults experiencing diet inter-
vention. Comparison of model simulations with experimental data
demonstrated predictive strength of the CODY modeling frame-
work and hence lays the foundation for performing design of
microbiome-directed therapeutics or of precision nutrition based
on CODY simulations. The source code of CODY is freely
available together with full documentation at https://github.com/
JunGeng-Sysbio-Chalmers/CODY1.0_SourceCode.

Results
Pipeline of the Multiscale Framework for CODY. CODY is con-
structed relying on three multiscale modeling components that
describe the species-level bacterial dynamics, higher-order micro-
bial interactions, and colon physiology (Fig. 1; abbreviations are
listed in SI Appendix, Table S1). A smaller-scale ecosystem repre-
senting the dominant microbial species is identified to perform
CODY, following the typical way to reduce the high-dimension
complexity of gut microbiota (12, 14). The first modeling compo-
nent of CODY, namely, enzyme-centric metabolic framework
(termed ECMF), is developed to characterize the dynamic me-
tabolism for each species in the identified ecosystem (SI Appendix,
Supplementary Method 1). The key concept of the ECMF frame-
work relies on the “hybrid cybernetic” perspective (35–38), which is
achieved through two operations. First, we decomposed GEMs (SI
Appendix, Table S2) to a unique set of feasible metabolic pathway
modules (MPMs; Datasets S1–S8) using elementary flux modes
and yield analysis (39, 40). The MPMs thus represented condensed
metabolic pathways that transformed specific substrates to end
products. Second, the regulation process, i.e., a distinct aspect of
metabolism (41), was incorporated into ECMF, which endows the
microbes to use different MPMs at different conditions. This is
achieved by preferential controls on the levels and activities (i.e., u
and v in Fig. 1A) of enzymes that catalyze the metabolic trans-
formations. Hereby the uptake flux of microbes (Fig. 1A) could be
viewed as being optimally distributed among MPMs in a regulated
way. With the identified kinetic parameters, ECMF enables us to
predict the dynamic substrate uptake of microbes, metabolic pro-
files of growth, and production of key metabolites. As ECMF en-
ables dynamic use of different metabolic pathways that can resemble
the metabolic capacity, it is different from constraint-based models
that only used one metabolic mode represented by the objective
function (30). Using ECMF, microbial adaptiveness and robustness
are derived for the microbial system in response to diverse envi-
ronmental changes. The reliance on enzyme-centric control renders
ECMF to capture specific uptake rate as weighted sum of the cor-
responding time-specific uptake rates of MPMs, and this relieves the
necessity of a priori knowledge on substrate uptake rates.
Higher-order interactions are known to determine microbiota

stability and community functions (31). Lacking a priori knowledge
on interspecies interaction is a major hurdle for performing quan-
titative characterization of the emerging behavior of microbial
consortia (42). To address this, we develop a hierarchical resource
allocation framework (HRAF; SI Appendix, Supplementary Method
2) that combines an additional layer of dietary carbohydrate degra-
dation with the dynamic microbial–microbial interactions through

exchanging the common small molecules within the shared envi-
ronment. Taken together, HRAF performs iterative multidimension
resource allocation, resulting in calculation of uptake fluxes for each
microbe in response to local environment changes (Fig. 1B).
The last modeling component in CODY is a spatial com-

partmentalized framework (SPCF; SI Appendix, Supplementary
Method 3). Since the human large intestine hosts a large amount
of bacteria that ferment indigestible dietary components escap-
ing the stomach and small intestine, we sought to biomimetically
characterize the structure and physical forces in both longitudi-
nal and cross-sectional directions of the colon. Given that the
human colon has an inverted U shape comprising four segments, the
biogeographic-specific microbiota residence in the gut was repre-
sented by four connected regions of two parallel compartments,
i.e., four regions for the lumen compartment and four regions for the
mucus compartment. By employing the tank-in-series model con-
cept, the metabolite exchange between different regions in the lu-
men compartment and from each region of the lumen compartment
to the stagnant mucus compartment can be described. A ninth re-
gion of the model was added to represent rectum and feces storage,
and this region was modeled as a fed-batch reactor that is emptied in
connection with the defecation process (Fig. 1C and SI Appendix,
Supplementary Method 3). Mass transport due to colon hydrody-
namics was incorporated into SPCF by considering three major
physical forces, i.e., peristaltic mixing, water absorption, and microbe
detachment. Incorporation of a blood circulation system further
enabled quantification of how microbial variations impact host me-
tabolism via key microbial-specific metabolites. The SPCF model
contains a total of 29 parameters that all have physiological mean-
ings, and the values of the parameters could be obtained from lit-
erature describing colon anatomy and physiology.
The step-by-step CODY workflow is described in detail in SI

Appendix, Fig. S1. With defined composition and frequency of
specific dietary inputs (Fig. 1D), CODY was assembled by inte-
grating microbiota dynamics described by ECMF and HRAF into
the colon environment described by SPCF (Fig. 1E). We wanted
to use CODY to predict the in vivo and in vitro spatiotemporal
dynamics of the human gut microbiota (Fig. 1 F and G) for two
longitudinal cohorts, i.e., healthy infants and obese adults. How-
ever, first we evaluated the individual modeling components
separately.

Evaluation of the Three Component Frameworks of CODY. First, we
evaluated the ECMF for monocultures of the representatives of
microbial ecosystem members that are also in vitro culturable,
i.e., Bacteroides thetaiotaomicron (Bth), Bacteroides fragilis (Bfr),
Bifidobacterium longum (Blg), Bifidobacterium breve (Bbv), Bifi-
dobacterium adolescentis (Bad), Eubacterium hallii (Ehal), Fae-
calibacterium prausnitzii (Fpr), and Roseburia intestinalis (Rint)
(SI Appendix, Supplementary Method 4). These species were se-
lected to represent the gut microbiota in a cohort of Swedish
children following three criteria: 1) They represent not only the
most abundant species, but also all members of the dominant
phyla; 2) the main metabolic capacity should be well character-
ized, which thus allowed us to investigate how microbial variations
affect host metabolism; and 3) the effect of other community
members should also be taken into account by a scaling process.
The detailed process is described in SI Appendix, Supplementary
Method 4 and Fig. S1B. Employing ECMF operations, the dy-
namics of each microbial ecosystem member was characterized.
Experimental metabolite profiles at 0 h were taken as the initial
condition, by which ECMF enables us to simulate subsequent
time-coursed metabolic profiles. The kinetic parameters for each
microbial ecosystem member were estimated (∼10 on average), by
minimizing the sum of squares of residuals between model simu-
lations and experimental data (Datasets S9 and S10). We evalu-
ated the ECMF performance using coefficient of determination
(R2) between model simulation results and in vitro experimental
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data (SI Appendix, Table S3), showing ∼95% of experimental data
could be explained by our model (SI Appendix, Fig. S2). To ex-
amine the robustness of the ECMF simulation we performed a
sensitivity analysis and found that the model simulations are rel-
atively invariant to small variations of the kinetic parameters
(±5%) (SI Appendix, Fig. S3). ECMF simulations also suggested
that these representatives can resemble key metabolic features of
the gut microbiota (SI Appendix, Table S4); e.g., acetate is pro-
duced by Bacteroides and Bifidobacterium, succinate and propio-
nate are produced by Bacteroides, and butyrate is produced by
Firmicutes (SI Appendix, Fig. S4).
Next, we evaluated HRAF with a two-species coculture, Bth

and Bad, employing a reference dataset (43). ECMF accounting
for multiple substrate usage for these two species was first de-
veloped and evaluated (SI Appendix, Supplementary Method 5
and Table S5). Model simulation results showed that ECMF
captured the metabolic shifts among multiple substrates (R2

ranging from 0.94 to 0.98; SI Appendix, Fig. S5). With the
identified parameters and using the coculture metabolite profiles
at 0 h (from the same dataset) as model input, HRAF predic-
tions associated with dynamic nutrient utilization profiles, total
microbial density profiles were compared with the in vitro ref-
erence dataset, and the accuracy was measured by the determi-
nation of coefficient of R2 (0.89, as shown in Fig. 2A). Similarly,
the model predictions on dynamic microbial metabolite pro-
duction profiles could be achieved with R2 of 0.95 (Fig. 2B).
More importantly, HRAF enabled quantitative predictions of
time-coursed contributions of individual bacteria to the cocul-
ture and the interspecies interactions, consistent with the mea-
surement of qPCR data from the same dataset (R2 of 0.93), as
shown in Fig. 2C. This clearly demonstrates the predictive
strength of the HRAF as all kinetic data were obtained from the
individual bacterial models.
We next applied HRAF to predict ecological interactions

between all the species considered in our ecosystem (SI Appen-
dix, Supplementary Method 6 and Dataset S11). To this end, the
dynamic behaviors of synthetic cocultivations of two-species co-
culture were predicted adopting the HRAF framework, for all
possible pairwise combinations from the representative ecosys-
tem members. The predicted growth rates in coculture conditions
of each combination were compared to those obtained for
monoculture conditions to calculate an interaction index (SI Ap-
pendix, Fig. S6). In total, 21 out of 28 pairs were predicted to
compete (−/−) with each other due to nutrient requirement
overlap, supporting the notion that competition is the prevalent
interaction in microbial ecosystems (24, 44). For example, com-
petitions were predicted between members of Bacteroides and
Bifidobacterium groups, consistent with previous reports (45, 46).
Moreover, the outcompeting capacity of Bacteroides to Roseburia
was predicted from our results and agrees well with literature
reports (47, 48). Prediction of commensalism (+/0) interaction
between Bifidobacterium and Eubacterium mediated through
cross-talking via lactate was also consistent with literature reports
(49–51). Acetate-mediated cross-feeding between Bacteroides and
Eubacterium has also been reported (52). These results confirm
that HRAF provides a generalized approach to capture the in-
digenous microbial dynamics and enables investigation of system-
level interspecies interactions.
To evaluate the feasibility of SPCF (SI Appendix, Fig. S7) in

capturing colonic physiology we compared model simulations with
data from the TNO intestine model (TIM), a reliable in vitro ex-
perimental setup used to simulate colon physiology (53) (SI Ap-
pendix, Supplementary Method 7). With identical inflow rate and
volume settings, SPCF could predict the spatiotemporal profiles
with different nutrition signals as model input (SI Appendix, Figs.
S8–S10), and consistent predictions on the outflow rate and transit
time with TIM performance could be observed (SI Appendix, Table
S6). Additionally, time-coursed SCFA production (SI Appendix,

Fig. S11) and composition (SI Appendix, Fig. S12) with four com-
plex carbohydrates by SPCF prediction showed good agreement
with measurements from TIM experiments.

Evaluation of CODY Predictions on Microbiota Variations of Two
Longitudinal Metagenomics Studies. To predict the dynamic re-
sponse of in vivo site-specific gut microbiota to life events such
as diet intervention, the three evaluated and functional
frameworks were assembled into CODY, by incorporating the
microbial ecosystem models (HRAF and ECMF) into the colon
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Fig. 2. Evaluation of HRAF prediction capacity in characterizing dynamic
microbial–microbial interactions and growth dynamics of the synthetic mi-
crobial coculture, through comparing pure model predictions on dynamic
nutrient utilization profiles, dynamic growth profiles, and microbial–microbial
interaction profiles of the two-species coculture with experimental data.
Evaluation of HRAF’s prediction capacity in characterizing the dynamic nutri-
ent profiles (A), dynamic growth profiles (B), and individual microbial growth
capacity of a two-species cocultures, i.e., Bth and Bad, with the use of an ex-
perimental dataset (C). In each panel, the HRAF prediction results are shown as
solid lines, and experimental data are shown as symbols. Different microbial-
associated metabolite and growth profiles are denoted by specific colors
presented above each panel. A shows the comparison results between the
HRAF predictions on the dynamic growth profiles and utilization profiles of
three substrates, glucose, maltose, and starch, and the experimental dataset
for the two-species cocultures. B indicates the comparison results between
HRAF predictions and experimental dataset on associated dynamic metabolite
profiles for the two-species cocultures. C exhibits the comparison results be-
tween HRAF predictions and experimental data on individual microbial
growth profiles of the two-species coculture. The comparison results between
model predictions and experimental data are evaluated and measured by the
coefficient of determination (R2; the calculation equation can be found in
Methods) in each panel ranging from 0.89 to 0.95.
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model (SPCF). The predictive power of CODY was evaluated by
employing it to simulate gut microbiota variations in two clinical
studies (11, 54), i.e., a Swedish healthy infant cohort, where neo-
natal gut microbiota colonized under breastfeeding from newborn
to the fourth month and successively maturated toward the 12th
month with a diet switched to solid food (54), and the Helsinki
obesity adult cohort, where obese individuals were subjected to an
isocaloric carbohydrate-restricted diet for 14 d (11) (SI Appendix,
Supplementary Method 8).
To model a real-life dietary scenario, we employed different

feeding strategies, i.e., with six meals per day for breastfed infants

and three meals per day for adults. The amount and composition
of diet- and host-derived macronutrients, i.e., human breastmilk
oligosaccharides, fiber, resistant starch, and mucins were deter-
mined according to condition-specific cohort (SI Appendix, Table
S4) and translated to aggregated microbial-accessible carbohy-
drates (MACs) as CODY input.
We first demonstrated CODY prediction capacity for the in-

fant cohort. By applying microbial abundance of representatives
of the dominant phyla at newborn as the initial condition
(baseline) of infant gut microbiota (SI Appendix, Fig. S13) and
employing the total amount of MACs fed the gut microbiota
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Fig. 3. Validation of CODY by comparing model simulation results of the fecal microbiota variations and plasma metabolite changes in response to diet intervention
for two cohorts, a Swedish healthy infant cohort during the first year and a Helsinki adult cohort with diet intervention. (A) Evaluation of CODY predictions on fecal
microbiota configurations for the infant cohort. Pie charts show the comparison of CODY predictions on fecal microbiome composition to metagenomics measurement
of fecal samples (Top) of neonatal infants during breastmilk-feeding period, and that for afterward shifting to solid-food feeding period (Bottom). (B) Evaluation of
CODY predictions on dynamic variations of individual bacterium by comparing to experimental data for the infant cohort. Box plots (Top) show the dynamic variations of
infant microbiota configurations from newborn (0) to fourth month (4) and then until the 12th month (12), from the metagenomics measurements of 68 infant fecal
samples. The data are shown as relative abundance. The dynamic changes for individual bacteria are shown by the gray lines which connect mean relative abundance at
the three stages. Bar plots (Bottom) showmodel simulation results of relative abundance profiles in the feces, obtained by converting CODY predictions on the absolute
microbial abundance profiles to relative abundance profiles, which was further scaled by the total proportion of the representative microbial ecosystem. (C) Evaluation
of CODY predictions on fecal metabolite changes for the infant cohort. Bar plot shows comparison between model predictions on SCFA profiles in the feces and age-
matched reference data taken from the experimental measurements (54), with coefficient of determination (R2) shown for the assessment of explanatory power of
model predictions (R2 equation is given inMethods). Orange bars denote predictions and green bars denote experimental data. Metabolite abbreviations: Act, acetate;
Buty, butyrate; Prop, propionate; 4m, fourth month; 12m, 12th month. (D) Validation of CODY predictions on microbiota relative abundance for the adult cohort. The
coefficient of determination (R2), ranging from 0.76 to 0.96, is shown for the assessment of explanatory power of CODY by comparing to reference data taken from
metagenomics measurements (11), at baseline (D0) and intervention (D14) for the obese adult cohort. (E) Evaluation of CODY predictions on the dynamic changes of
individual bacteria by comparing to metagenomics profiling of fecal samples for the adult cohort (11). Box plots (Top) show the dynamic variations of adult microbiota
bacteria from baseline (D0) to 14 d after diet intervention (D14), from the metagenomics measurements. The dynamic changes for individual bacteria are shown by the
gray lines which connect the two different stages. Bar plots show the CODY predictions on the dynamic changes of the individual bacteria.
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dependent on the average breastmilk intake, we sought to sim-
ulate the dynamic colonization of infant gut microbiota under
the breastmilk-feeding regime (SI Appendix, Figs. S14–S15). The
microbial profiles were predicted converging to stable configu-
rations after 12 d. The poststabilized microbial and metabolic
profiles were used as the new baseline for subsequent simula-
tions for successive maturation dynamics, under the solid-food
regime, which shows converging to a new stability after 25 d. To
evaluate its fidelity, CODY predictions of the poststabilized
feces-specific microbiota composition at colonization and mat-
uration stages were compared to the reference data taken from
the in vitro fecal metagenomics measurements of early infancy,
i.e., fourth month and 12th month (Fig. 3A), showing excellent
agreement with R2 ranging between 0.83 and 0.96 (SI Appendix,
Fig. S16). Moreover, CODY correctly captured the dynamic
changes of relative abundance for each microbial member in
response to diet switch from breastmilk to solid food, through
comparing to that observed from 68 infants (Fig. 3B). For ex-
ample, the dramatic variations of Blg was accurately predicted,
which showed significant increase (P < 10−7, Wilcoxon test)
under breastmilk feeding due to the “bifidogenic factor” (55)
and significant decrease (P < 10−3, Wilcoxon test) along with diet
switch to solid food. Additionally, CODY enabled quantitative
predictions of SCFA production over the two periods (Fig. 3C).
The poststabilized SCFA levels predicted in the feces compart-
ment show good agreement with age-matched SCFA reports
(56). Furthermore, the total SCFA amount (12.02 mmol/d) of
predictions in the feces and SCFA alternation predicted in the
plasma (SI Appendix, Fig. S17) agrees well with the expected
adult level (57, 58).
Next, we demonstrate CODY prediction capacity for a hepatic

steatosis adult cohort, where a control and an isocaloric
carbohydrate-restricted diet (SI Appendix, Table S4) were used
as model input before and after diet intervention. The accuracy
of CODY predictions was validated by comparing the model
predictions of adult poststabilized microbiota compositions in
the feces to reference data from experimental metagenomics
measurements, with R2 ranging from 0.76 to 0.96 (Fig. 3D). The
accuracy of CODY predictions was further validated by com-
paring time-coursed dynamic variations for individual bacteria
between CODY predictions and experimental data, which
exhibited consistent patterns (Fig. 3E). These results evidently
presented CODY’s capability to quantify how the microbiota
configuration in feces and the plasma levels of SCFA were al-
tered in response to diet-intervention manipulation.

CODY Enabled In-Depth Insights into the Biogeographic Specific In
Vivo Dynamic Gut Microbiome Variations. Besides predicting gut
microbiota dynamics in feces, CODY also enables insight into
the microbiome dynamics along the gut axis, and hence infor-
mation about how exogenous factors drive in vivo microbiome
adaptation and establish stability—which is hardly measurable or
predictable.
The prediction results related with the site- and temporal-

specific microbiota profiles (SI Appendix, Figs. S18–S22 and
Fig. 4A) suggest that phylogenetically related bacteria tend to
coevolve together. Among the infant gut microbial ecosystem,
Bth and Bfr are found to increase simultaneously when shifting to
a solid-food regime (Fig. 4 A and B). Intriguingly, the dynamic
trajectories of three Actinobacteria species (Blg, Bad, and Bbr)
exhibited concomitant patterns, i.e., increasing in short periods
followed by a gradual decrease. Moreover, the concurrent in-
crease of Fpr and Rint resulted in their sequential blooming
patterns with the other two phyla. These results support the re-
cent ecological observations in nature, i.e., the phylogenetically
more related microbial species tend to co-occur and diverge in
different ecological niches (27, 59). Thus, CODY predictions
explore the significant effects of diet regime, host physiological

factors and spatial structure, which collectively determined the
higher-order microbial interactions and further shaped diversi-
fication, upon which CODY enables characterizing the in vivo
gut microbiota dynamics that cannot be achieved by previous
computational-based approaches.
The quantitative predictions on the spatiotemporal-scale mi-

crobial (Fig. 4B) abundance profiles and metabolite absolute
abundance profiles (Fig. 4C) further allowed insights into how
host–microbiota interactions promote stability. Rhythmic oscil-
lation was explored as a distinct pattern among dynamic re-
sponses of microbe and metabolite to diet intake at different
meal times during the day. Interception of 24-h data on metab-
olite variations responding to the diet input (Fig. 4D) exhibited a
time-coursed lag phase with respect to the longitudinal trans-
portation, further illustrating how CODY can reflect the human
digestion transit time. Importantly, the magnitude and absolute
levels of oscillated dietary macronutrients, MACs, dampened
along the longitudinal colon, rigorously reflecting the in vivo
extrinsic constraints imposed by the host capacity during estab-
lishment of microbial populations. Hence, the absolute microbial
abundances increase longitudinally by twofold in the proximal
site, while gradually becoming stable when moving toward the
distal regions (Fig. 4E and SI Appendix, Fig. S23A). The pre-
diction results on absolute SCFA abundance profiles showed
that SCFA production increased in the proximal colon (70∼220
mmol/kg feces) and decreased in the distal colon due to their
continuous absorption into plasma (60∼120 mmol/kg feces) (SI
Appendix, Fig. S23B). These results suggested the proximal re-
gion as the main fermentation site, consistent with physiological
studies (60, 61). Thus, by incorporating host physiology factors
mimicking the colon function, CODY enables mechanistic en-
vision of how individual-based microbiota development is de-
termined, as well as emergent stability is promoted.
To obtain further insights into the biogeography of microbiota

dynamics and spatiotemporal variations, we employed the hctsa
toolbox (62) to hierarchically cluster (SI Appendix, Supplementary
Method 9) the dynamic trajectories of each of the representative
microbial ecosystem members residing in the site-specific regions
of colon in both the longitudinal and cross-sectional directions
(SI Appendix, Fig. S24). The time-coursed microbial abundance
profiles with respect to different colonic sites were mapped into
three distinct clusters (Fig. 4F) corresponding to lumen, mucus, or
feces, respectively, strongly suggesting biogeographical heteroge-
neity of the microbiota in the colon. Furthermore, the dominant
features that significantly classified the three clusters (adjusted P <
10−10; SI Appendix, Fig. S25) were identified as being linked to
stationary property (SI Appendix, Table S8), illustrating that mucus
was less impacted than lumen by the physical forces. This could be
inferred by less mobility in the mucus membrane structure. Spatial
structure was then envisaged as a potential route to promote sta-
bility, especially for those bacteria that cannot counteract the flow
rate due to poor growth, which were instead rescued from extinc-
tion through replenishing from the mucus layer.

Discussion
CODY is a dynamic framework adopting a bottom-up modeling
approach that establishes the dynamic interface upon which in-
trinsic dynamics of microbiota ecosystem adapt to extrinsic host
impacts and environment perturbations (e.g., diet intervention),
through comprehensively integrating multidimensional frameworks.
CODY serves as a computational instrument to quantitatively vi-
sualize spatiotemporal microbial absolute abundances profiles and
response to perturbations, across biogeographic-specific regions in
the gut, which is impractical to observe in vivo. Evidently, incor-
poration of feces and plasma compartments allows for evaluating
CODY predictions on consequential changes in fecal microbial
abundance profiles and plasma metabolites for two cross-sectional
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Fig. 4. CODY output shows quantitative predictions on how exogenous factors shape dynamic in vivo biogeographic-specific microbial variations within
different colon regions, as well as in vitro plasma metabolic shift in response to the diet intervention. (A) Line plot shows the in vivo dynamic profiles of
selective species and metabolites (MACs, acetate, butyrate, and propionate) in response to diet switch from breastmilk to solid food in ascending lumen
compartment. (B) Heat maps show the biogeographic-specific microbiota changes along longitudinal luminal colon regions from newborn to 12th month.
Each four rows denote one bacterium, annotated by colored bars on the left of the heat map. Colon site annotations: I, ascending; II, transverse;, III,
descending; IV, sigmoid. (C) Heat maps show the biogeographic specific metabolite changes along longitudinal luminal colon regions. Each four rows denote
one metabolite; a total of 10 metabolites are shown. Hex, hexose; Succ, succinate; Act, acetate; Prop, propionate; Lac, lactate; For, formate; Eth, ethanol; Buty,
butyrate; H2, hydrogen. (D) Line plots show the CODY output associated with human digestion transit time, as the lag phase shown with time difference
between model diet input under real-life scenario (MACin) and model output of selected metabolites in the ascending lumen region (carbohydrate, hexose,
and succinate). Metabolite annotation: MACin, diet input; MACpre, model prediction of feeding diet; Hex, hexose; Succ, succinate. (E) Bar plots show CODY
output associated with model predictions of biogeographic-specific microbial abundance profiles within the in vitro colon site-specific regions in the lon-
gitudinal direction. Model output is shown on the poststabilized microbial configurations during solid-food feeding period. (F) Identification of biogeo-
graphic heterogeneity by performing principle component analysis with the hctsa toolbox (SI Appendix, Supplementary Method 9) on the CODY output of
model predictions of dynamic microbial abundance profiles that are distributed along the longitudinal direction, i.e., the dynamic development trajectories of
microbes residing within the ascending, transverse, sigmoid, and descending colon regions associated with the luminal/mucus compartments, as well as the
dynamic microbial development in the feces compartments. (G) Evaluation of CODY output with respect to model predictions on the poststabilized microbial
abundance profiles in the feces compartment by comparing model predictions and metagenomics measurements across the time-series scales during short-
term diet-restriction treatment for the hepatic steatosis adult patients, i.e., 0, 1, 3, 7, and 14 d after diet intervention. Lines are shown for CODY predictions on
the time-coursed microbiota dynamic variations. Symbols are shown for representing metagenomics measurements at 0, 1, 3, 7, and 14 d after diet
intervention.
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cohort datasets, which confirms the predictive power and hence
utility of CODY in facilitating clinical diagnosis.
CODY provides a computational platform to quantify how

nutritional and host factors shape microbial–microbial interac-
tions and thus landscape development of the gut microbiota
ecosystem. A first step toward this endeavor (12) provided sta-
tistic predictions of a diet modulation effect based upon a
constraint-based approach, with predefined objective function
and a priori knowledge of community-level flux distribution.
Since the predefined exchange flux distribution and community-
level objective function are usually impractical to obtain in vivo,
the computational platform proposed here removes the necessity
of acquisition of associated knowledge, thus facilitating the po-
tential to investigate higher-order microbial interactions (63), as
can be seen from the metabolic shift among multiple substrates,
which is accurately predicted for the consortia. This represents
an advancement compared with other computational methods
such as the Computation of Microbial Ecosystems in Time and
Space (COMET) approach that solely relies on FBA (32). This
offers new opportunities for quantifying condition-dependent
ecological niches and exploring how microbiota variations in
the gut impact human physiology. For example, as can be seen
from CODY predictions on microbial profiles for the obese adult
cohort, the in vivo variation patterns among three actinobacteria,
Blg, Bbv, and Bad, follow an asynchronous trend (SI Appendix,
Figs. S26–S28). Moreover, our approach points to the possibility
to understand mechanisms by which the microbial ecosystem
respond to exogenous perturbations. Different numbers of mi-
crobial species used for demonstration of two cohorts suggest the
promising future of expanding CODY to study restoration of gut
microbiota through introduction of novel probiotics or removal
of specific species, and how diversity, stability, and resilience of
microbial ecosystem are fostered (2). Although a limited number
of species are employed in the current format of framework, the
conceptual framework itself is scalable and we foresee more
species would be integrated when data from more culturable gut
microbiota species become available.
The robustness of CODY in characterizing the spatiotemporal

microbial variations and its flexibility can be assessed by comparison
of model predictions with metagenomics microbial relative abun-
dance profiles of two clinical cohort studies with distinct pheno-
types. Despite the advancement of sequence-based approaches,
profiling microbial structure as fractions of sequence library ignored
the overall microbiota abundance itself, which could be a key in-
dicator of specific disease (17). One compelling application of
CODY relied on the advancement in predictions of spatiotemporal
absolute abundance profiles in the gut. For example, CODY not
only accurately predicts the decreased relative abundance of Bth
and Bfr from the fourth month to the 12th month that is consistent
with other infant studies (10) but also predicts their increased ab-
solute abundance due to diet intake increase (SI Appendix, Fig.
S14). CODY could also be used to simulate variations among in-
dividuals in a cohort, but this would require information about di-
etary intake for the individuals, and as we did not have this
information for the studied cohorts we did not exploit this further.
The ability of CODY to predict absolute changes of microbial and
SCFA profiles along the longitudinal colon sites is an additional
strength of the modeling framework. Together with incorporation
of colon spatial heterogeneity, CODY provides insights into how
distinct patterns of time-coursed microbiota profiles develop in the
lumen and mucus in response to probiotics intervention, which
could potentially promote the development of metabolic diseases
treatment (64).
As a proof of concept, we employed CODY to predict the

in vitro microbiota changes for the hepatic steatosis adults and
compared model predictions with time-coursed measurements of
fecal samples, at 0, 1, 3, 7, and 14 d after diet intervention
(Fig. 4G). Consistently, we found the decrease of Blg, Bbr, Bad,

Rint, and Fpr and increase of Bacteroides agree well with the
marked microbiota variations that contribute to liver metabolism
improvement of the hepatic steatosis patients via diet intervention.
Consequent changes on fecal SCFA are predicted coincidently
with the recent reports (8). In addition, CODY’s predictions on
changes in the plasma concentration of SCFAs (SI Appendix, Fig.
S29) further assisted prognosis. The consistency between CODY
predictions and experimental observations for the adult cohort
possessing a microbial ecosystem structure very different from that
of the infant cohort demonstrates the promising scalability of
CODY in enabling simulation of various scenarios.
Collectively, CODY can be readily applied to explore and vi-

sualize biogeographic-specific long-term and short-term patterns
of microbial responses, upon defined diet-intervention strategies
(https://github.com/JunGeng-Sysbio-Chalmers/CODY), and thus
investigate precision-nutrition outcomes. Quantitative understand-
ing of physiological and environmental factors determined absolute
microbial activities at longitudinal and site-specific scales broaden
its utility for designing strategies that will ensure stable colonization
of desired probiotics, and hereby points to its utility in facilitating
the advancement of precision medicine.

Methods
Details on methods and collection of data used in this study are provided in SI
Appendix, but a brief summary is provided below.

CODY Development Process. The colon hydrodynamic environment where the
gut microbiota resides was described by an SPCF which accounts for the colon
structure and physical forces in axial and cross-sectional directions (SI Ap-
pendix, Supplementary Method 3). All SPCF parameters were determined
based on literature-based knowledge of the colon physiology. The gut mi-
crobial ecosystem was described by eight bacteria that reside within each
region of the colon compartment. The intrinsic dynamics of the gut micro-
bial ecosystem was described by an HRAF (SI Appendix, Supplementary
Method 2) and an ECMF (SI Appendix, Supplementary Method 1). The
governing system equations of the microbes and metabolites in CODY were
described as follows:

∂φJ
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= (Fk−1φJ
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J
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i
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where k and t denote the position of colon and simulation time. φJ
k denotes

the state variable of dynamic profiles for Jth member of microbiota ecosystem

in kth site-specific region. ξik denotes the state variable of dynamic profiles of
ith metabolite in kth site-specific region. Vk denotes tank volume of kth site-
specific lumen region. Fk and Fk-1 are to-and-from bulk flows for the kth lumen
region site. The back flow due to axial back-mixing in the kth lumen region site
is indicated as qk. km represents mass transfer coefficient between lumen and

mucus. ξik,lumen and ξik,mucus represent the state variable of dynamic profiles for

ith metabolite associated with the microbiota ecosystem. ZJ and SJx denote the
stoichiometric matrix related with MPMs of the Jth member of microbiota
ecosystem. rJk represents the regulated kinetic uptake rate vector of the Jth

member of microbiota ecosystem in the kth site-specific region, which is de-

pendent on the metabolite vector of ξik. The symbol “∇” represents the gra-
dient between microbial ecosystem members residing in mucus and lumen
compartments through mucus associated bacterial detachment. Thus, the first
term in both equations denotes luminal flow that is described by the con-
vection effect, the second term denotes effective peristaltic movement that is
described by a back-mixing effect, the third term denotes the microbial dy-
namics that is collectively contributed by all ecosystem members (J = 1, . . . N,
with n = 8 in this context). The “+” sign before the third term is applied due to
the net effect of microbial growth/metabolic production has been incorpo-
rated into the stoichiometric matrix of SJx. The last term in Eq. 1 denotes the
cross-talk between mucus and lumen compartments via detachment. The last
term in Eq. 2 denotes the perfusion effect in the cross-sectional direction of
colon, via mass transport between lumen and mucus compartment, or
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between mucus and blood compartment. The system-level overall equations
are detailed as SI Appendix, Eqs. 16–36.

Experimental Data. Experimental data for evaluation of both ECMF and HRAF
were collected from the literature (SI Appendix, Table S2). For ECMF evalua-
tion, datasets were taken from monoculture experiments involving mono-
substrate as the main carbon source. For Bth, Bfr, Blg, Bbv, and Bad, time-series
experimental data for each species were obtained with hexose as the carbon
source. Data for Ehal were based on using both acetate and lactate as carbon
sources. For Fpr and Rint, the experimental data were obtained using hexose
and acetate as carbon sources. For evaluation of HRAF, experimental data
were taken from published data that involved multiple carbon sources. More
detailed description of each experimental dataset used for evaluation of
model simulations is provided in SI Appendix, Supplementary Method 4.

Datasets for Evaluation and Data Preprocessing. The dynamic ECMF for the
eight bacteria was evaluated employing experimental fermentation data from
various literature reports (SI Appendix, Table S3). To evaluate how HRAF could
predict a two-species consortium, we employed a published experimental
dataset (SI Appendix, Table S3), which comprised both time-series fermenta-
tion data of the monoculture and similar data from a coculture using three
different carbohydrates. To evaluate HRAF in predicting pairwise interactions,
kinetic parameters for the eight species determined from their ECMF were
adopted for each species. Initial substrate concentrations were normalized to
be at the same level. Monoculture simulations were performed for each spe-
cies and used as reference. Coculture simulations were performed and com-
pared to the monocultures to calculate the interaction index, following SI
Appendix, Eq. 37. Both monoculture and coculture data are shown in Dataset
S11. SPCF was evaluated by using TIM observations, both for reported colon
transit time and short-chain fatty acid production observed from TIM
experiments.

To evaluate CODY two clinical studies, one involving an infant cohort and
the other involving and obese adult cohort (SI Appendix, Supplementary

Method 8), were used. Evaluation was done by comparing model simulations
with the two longitudinal metagenomics datasets measured from fecal sam-
ples (SI Appendix, Table S3).

Data points shown in Fig. 3 B and E use relative abundance data, which
were obtained by normalizing the metagenomics measurements for each
sample, based on the published data (SI Appendix, Table S3). The initial
condition of the microbial ecosystem was considered as the same configu-
rations as the baseline condition, i.e., newborn fecal composition was used
for the infant cohort and baseline composition profiles were used for the
adult cohort. The presented microbial relative abundance profiles in Fig. 3
were calculated based on model prediction results on the absolute microbial
abundances, which were further scaled by the total proportion of the
smaller scale ecosystem following SI Appendix, Eq. 45.

Data Availability. All three frameworks (i.e., ECMF, HRAF, and SPCF) were de-
veloped with MATLAB 2016b. The construction process of ECMF involves the
software package of Metatool (https://pinguin.biologie.uni-jena.de/bioinformatik/
networks/metatool). The coefficient of determination (i.e., R2) was calculated
based on its definition (i.e., R2 = 1 − RSS=TSS). All predictions of dynamic micro-
biota reprogramming for the infant and adult cohort were performed with
MATLAB 2016b. The results were visualized using MATLAB 2016b, R (v3.5.1), and
RStudio (v1.1.442). All source codes are freely available at https://github.com/
JunGeng-Sysbio-Chalmers/CODY1.0_SourceCode. The toolbox package can be
accessed at https://github.com/JunGeng-Sysbio-Chalmers/CODY. All other study
data are included in the article and/or supporting information.

ACKNOWLEDGMENTS.We thank Professor Fredrik Bäckhed for his many valu-
able comments on our work and our paper. We thank Professor Jan Borén for
providing the dataset for the adult cohort. We thank Hao Wu, Filip Buric, Iván
Domenzain, and Yu Chen for their valuable discussions and suggestions. This
work was supported by the Bill & Melinda Gates Foundation, the Novo Nordisk
Foundation (Grants NNF10CC1016517 and NNF15OC0016798), and the Knut
and Alice Wallenberg Foundation.

1. I. Cho, M. J. Blaser, The human microbiome: At the interface of health and disease.
Nat. Rev. Genet. 13, 260–270 (2012).

2. C. A. Lozupone, J. I. Stombaugh, J. I. Gordon, J. K. Jansson, R. Knight, Diversity, sta-
bility and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

3. F. H. Karlsson et al., Gut metagenome in European women with normal, impaired and
diabetic glucose control. Nature 498, 99–103 (2013).

4. J. A. Gilbert et al., Microbiome-wide association studies link dynamic microbial con-
sortia to disease. Nature 535, 94–103 (2016).

5. M. Ratner, Seres’s pioneering microbiome drug fails mid-stage trial. Nat. Biotechnol.
34, 1004–1005 (2016).

6. W. Zhou et al., Longitudinal multi-omics of host-microbe dynamics in prediabetes.
Nature 569, 663–671 (2019).

7. D. Rothschild et al., Environment dominates over host genetics in shaping human gut
microbiota. Nature 555, 210–215 (2018).

8. L. A. David et al., Diet rapidly and reproducibly alters the human gut microbiome.
Nature 505, 559–563 (2014).

9. J. L. Sonnenburg, F. Bäckhed, Diet-microbiota interactions as moderators of human
metabolism. Nature 535, 56–64 (2016).

10. A. M. Baumann-Dudenhoeffer, A. W. D’Souza, P. I. Tarr, B. B. Warner, G. Dantas,
Infant diet and maternal gestational weight gain predict early metabolic maturation
of gut microbiomes. Nat. Med. 24, 1822–1829 (2018).

11. A. Mardinoglu et al., An integrated understanding of the rapid metabolic benefits of
a carbohydrate-restricted diet on hepatic steatosis in humans. Cell Metab. 27,
559–571.e5 (2018).

12. S. Shoaie et al.; MICRO-Obes Consortium, Quantifying diet-induced metabolic
changes of the human gut microbiome. Cell Metab. 22, 320–331 (2015).

13. L. Zhao et al., Gut bacteria selectively promoted by dietary fibers alleviate type 2
diabetes. Science 359, 1151–1156 (2018).

14. P. Kovatcheva-Datchary et al., Simplified intestinal microbiota to study
microbe-diet-host interactions in a mouse model. Cell Rep. 26, 3772–3783.e6 (2019).

15. B. W. Ji et al., Quantifying spatiotemporal variability and noise in absolute microbiota
abundances using replicate sampling. Nat. Methods 16, 731–736 (2019).

16. N. Zmora et al., Personalized gut mucosal colonization resistance to empiric probiotics
is associated with unique host and microbiome features. Cell 174, 1388–1405.e21
(2018).

17. D. Vandeputte et al., Quantitative microbiome profiling links gut community varia-
tion to microbial load. Nature 551, 507–511 (2017).

18. S. Marino, N. T. Baxter, G. B. Huffnagle, J. F. Petrosino, P. D. Schloss, Mathematical
modeling of primary succession of murine intestinal microbiota. Proc. Natl. Acad. Sci.
U.S.A. 111, 439–444 (2014).

19. M. Zhang, W. Ma, J. Zhang, Y. He, J. Wang, Analysis of gut microbiota profiles and
microbe-disease associations in children with autism spectrum disorders in China. Sci.
Rep. 8, 13981 (2018).

20. R. Agrawal, T. Imielinski, A. Swami, Mining association rules between sets of items in
large databases. SIGMOD Rec. 22, 207–216 (1993).

21. M. J. McGeachie et al., Longitudinal prediction of the infant gut microbiome with
dynamic bayesian networks. Sci. Rep. 6, 20359 (2016).

22. E. L. Sander, J. T. Wootton, S. Allesina, Ecological network inference from long-term
presence-absence data. Sci. Rep. 7, 7154 (2017).

23. R. R. Stein et al., Ecological modeling from time-series inference: Insight into dynamics
and stability of intestinal microbiota. PLOS Comput. Biol. 9, e1003388 (2013).

24. K. Z. Coyte, J. Schluter, K. R. Foster, The ecology of the microbiome: Networks,
competition, and stability. Science 350, 663–666 (2015).

25. S. Magnúsdóttir et al., Generation of genome-scale metabolic reconstructions for 773
members of the human gut microbiota. Nat. Biotechnol. 35, 81–89 (2017).

26. A. R. Zomorrodi, C. D. Maranas, OptCom: A multi-level optimization framework for
the metabolic modeling and analysis of microbial communities. PLOS Comput. Biol. 8,
e1002363 (2012).

27. R. Levy, E. Borenstein, Metabolic modeling of species interaction in the human mi-
crobiome elucidates community-level assembly rules. Proc. Natl. Acad. Sci. U.S.A. 110,
12804–12809 (2013).

28. A. Zelezniak et al., Metabolic dependencies drive species co-occurrence in diverse
microbial communities. Proc. Natl. Acad. Sci. U.S.A. 112, 6449–6454 (2015).

29. R. A. Khandelwal, B. G. Olivier, W. F. M. Röling, B. Teusink, F. J. Bruggeman, Com-
munity flux balance analysis for microbial consortia at balanced growth. PLoS One 8,
e64567 (2013).

30. W. Gottstein, B. G. Olivier, F. J. Bruggeman, B. Teusink, Constraint-based stoichio-
metric modelling from single organisms to microbial communities. J. R. Soc. Interface
13, 20160627 (2016).

31. A. Konopka, S. Lindemann, J. Fredrickson, Dynamics in microbial communities: Un-
raveling mechanisms to identify principles. ISME J. 9, 1488–1495 (2015).

32. W. R. Harcombe et al., Metabolic resource allocation in individual microbes deter-
mines ecosystem interactions and spatial dynamics. Cell Rep. 7, 1104–1115 (2014).

33. J. K. Nicholson et al., Host-gut microbiota metabolic interactions. Science 336,
1262–1267 (2012).

34. J. Cremer et al., Effect of flow and peristaltic mixing on bacterial growth in a gut-like
channel. Proc. Natl. Acad. Sci. U.S.A. 113, 11414–11419 (2016).

35. H.-S. Song, J. A. Morgan, D. Ramkrishna, Systematic development of hybrid cybernetic
models: Application to recombinant yeast co-consuming glucose and xylose. Bio-
technol. Bioeng. 103, 984–1002 (2009).

36. J. I. Kim, J. D. Varner, D. Ramkrishna, A hybrid model of anaerobic E. coli GJT001:
Combination of elementary flux modes and cybernetic variables. Biotechnol. Prog. 24,
993–1006 (2008).

37. H.-S. Song, D. Ramkrishna, Prediction of metabolic function from limited data:
Lumped hybrid cybernetic modeling (L-HCM). Biotechnol. Bioeng. 106, 271–284
(2010).

38. H.-S. Song, D. Ramkrishna, Cybernetic models based on lumped elementary modes ac-
curately predict strain-specific metabolic function. Biotechnol. Bioeng. 108, 127–140
(2011).

Geng et al. PNAS | 9 of 10
CODY enables quantitatively spatiotemporal predictions on in vivo gut microbial variability
induced by diet intervention

https://doi.org/10.1073/pnas.2019336118

SY
ST

EM
S
BI
O
LO

G
Y

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
6,

 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2019336118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2019336118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2019336118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2019336118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2019336118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2019336118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2019336118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2019336118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2019336118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2019336118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2019336118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2019336118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2019336118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2019336118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2019336118/-/DCSupplemental
https://pinguin.biologie.uni-jena.de/bioinformatik/networks/metatool
https://pinguin.biologie.uni-jena.de/bioinformatik/networks/metatool
https://github.com/JunGeng-Sysbio-Chalmers/CODY1.0_SourceCode
https://github.com/JunGeng-Sysbio-Chalmers/CODY1.0_SourceCode
https://github.com/JunGeng-Sysbio-Chalmers/CODY
https://doi.org/10.1073/pnas.2019336118


www.manaraa.com

39. S. Schuster, D. A. Fell, T. Dandekar, A general definition of metabolic pathways useful
for systematic organization and analysis of complex metabolic networks. Nat. Bio-
technol. 18, 326–332 (2000).

40. H.-S. Song, D. Ramkrishna, Reduction of a set of elementary modes using yield
analysis. Biotechnol. Bioeng. 102, 554–568 (2009).

41. A. P. Oliveira, U. Sauer, The importance of post-translational modifications in regu-
lating Saccharomyces cerevisiae metabolism. FEMS Yeast Res. 12, 104–117 (2012).

42. E. K. Costello, K. Stagaman, L. Dethlefsen, B. J. M. Bohannan, D. A. Relman, The
application of ecological theory toward an understanding of the human microbiome.
Science 336, 1255–1262 (2012).

43. P. Das, B. Ji, P. Kovatcheva-Datchary, F. Bäckhed, J. Nielsen, In vitro co-cultures of
human gut bacterial species as predicted from co-occurrence network analysis. PLoS
One 13, e0195161 (2018).

44. K. R. Foster, T. Bell, Competition, not cooperation, dominates interactions among
culturable microbial species. Curr. Biol. 22, 1845–1850 (2012).

45. D. Rios-Covian et al., Interactions between Bifidobacterium and Bacteroides species in
cofermentations are affected by carbon sources, including exopolysaccharides pro-
duced by bifidobacteria. Appl. Environ. Microbiol. 79, 7518–7524 (2013).

46. G. Falony, T. Calmeyn, F. Leroy, L. De Vuyst, Coculture fermentations of Bifido-
bacterium species and Bacteroides thetaiotaomicron reveal a mechanistic insight into
the prebiotic effect of inulin-type fructans. Appl. Environ. Microbiol. 75, 2312–2319
(2009).

47. S. L. La Rosa et al., The human gut Firmicute Roseburia intestinalis is a primary de-
grader of dietary β-mannans. Nat. Commun. 10, 905 (2019).

48. H. J. Flint, S. H. Duncan, K. P. Scott, P. Louis, Interactions and competition within the
microbial community of the human colon: Links between diet and health. Environ.
Microbiol. 9, 1101–1111 (2007).

49. A. Rivière, M. Gagnon, S. Weckx, D. Roy, L. De Vuyst, Mutual cross-feeding interac-
tions between Bifidobacterium longum subsp. longum NCC2705 and Eubacterium
rectale ATCC 33656 explain the bifidogenic and butyrogenic effects of arabinoxylan
oligosaccharides. Appl. Environ. Microbiol. 81, 7767–7781 (2015).

50. C. Schwab et al., Trophic interactions of infant bifidobacteria and Eubacterium hallii
during L-Fucose and Fucosyllactose degradation. Front. Microbiol. 8, 95 (2017).

51. V. Bunesova, C. Lacroix, C. Schwab, Mucin cross-feeding of infant bifidobacteria and
Eubacterium hallii. Microb. Ecol. 75, 228–238 (2018).

52. S. Shoaie et al., Understanding the interactions between bacteria in the human gut
through metabolic modeling. Sci. Rep. 3, 2532 (2013).

53. M. Minekus et al., A computer-controlled system to simulate conditions of the large
intestine with peristaltic mixing, water absorption and absorption of fermentation
products. Appl. Microbiol. Biotechnol. 53, 108–114 (1999).

54. F. Bäckhed et al., Dynamics and stabilization of the human gut microbiome during
the first year of life. Cell Host Microbe 17, 690–703 (2015).

55. L. Bode, Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology
22, 1147–1162 (2012).

56. D. L. Topping, P. M. Clifton, Short-chain fatty acids and human colonic function: Roles
of resistant starch and nonstarch polysaccharides. Physiol. Rev. 81, 1031–1064 (2001).

57. D. J. A. Jenkins et al., Physiological effects of resistant starches on fecal bulk, short
chain fatty acids, blood lipids and glycemic index. J. Am. Coll. Nutr. 17, 609–616
(1998).

58. J.H. Cummings, E.W. Pomare, W.J. Branch, C.P. Naylor, G.T. Macfarlane, Short chain
fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28,
1221–1227 (1987).

59. N. V. Patin, K. R. Duncan, P. C. Dorrestein, P. R. Jensen, Competitive strategies dif-
ferentiate closely related species of marine actinobacteria. ISME J. 10, 478–490 (2016).

60. J. H. Cummings, E. R. Beatty, S. M. Kingman, S. A. Bingham, H. N. Englyst, Digestion
and physiological properties of resistant starch in the human large bowel. Br. J. Nutr.
75, 733–747 (1996).

61. G. den Besten et al., The role of short-chain fatty acids in the interplay between diet,
gut microbiota, and host energy metabolism. J. Lipid Res. 54, 2325–2340 (2013).

62. B. D. Fulcher, N. S. Jones, hctsa: A computational framework for automated time-
series phenotyping using massive feature extraction. Cell Syst. 5, 527–531.e3 (2017).

63. E. Bairey, E. D. Kelsic, R. Kishony, High-order species interactions shape ecosystem
diversity. Nat. Commun. 7, 12285 (2016).

64. J. Suez et al., Post-antibiotic gut mucosal microbiome reconstitution is impaired by
probiotics and improved by autologous FMT. Cell 174, 1406–1423.e16 (2018).

10 of 10 | PNAS Geng et al.
https://doi.org/10.1073/pnas.2019336118 CODY enables quantitatively spatiotemporal predictions on in vivo gut microbial

variability induced by diet intervention

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
6,

 2
02

1 

https://doi.org/10.1073/pnas.2019336118

